MML mixture modelling of multi - state , Poisson , von Mises circular and Gaussian distributionsChris
نویسنده
چکیده
Minimum Message Length (MML) is an invariant Bayesian point estimation technique which is also consistent and eecient. We provide a brief overview of MML inductive inference (Wallace and Boulton (1968), Wallace and Freeman (1987)), and how it has both an information-theoretic and a Bayesian interpretation. We then outline how MML is used for statistical parameter estimation, and how the MML mixture modelling program, Snob (Wallace and Boulton (1968), Wal-lace (1986), Wallace and Dowe(1994)) uses the message lengths from various parameter estimates to enable it to combine parameter estimation with selection of the number of components. The message length is (to within a constant) the logarithm of the posterior probability of the theory. So, the MML theory can also be regarded as the theory with the highest posterior probability. Snob currently assumes that variables are uncor-related, and permits multi-variate data from Gaussian, discrete multi-state, Poisson and von Mises circular distributions .
منابع مشابه
MML mixture modelling of multi - state , Poisson
Minimum Message Length (MML) is an invariant Bayesian point estimation technique which is also consistent and eecient. We provide a brief overview of MML inductive inference (Wallace and Boulton (1968), Wallace and Freeman (1987)), and how it has both an information-theoretic and a Bayesian interpretation. We then outline how MML is used for statistical parameter estimation, and how the MML mix...
متن کاملMML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions
Minimum Message Length (MML) is an invariant Bayesian point estimation technique which is also statistically consistent and efficient. We provide a brief overview of MML inductive inference (Wallace C.S. and Boulton D.M. 1968. Computer Journal, 11: 185–194; Wallace C.S. and Freeman P.R. 1987. J. Royal Statistical Society (Series B), 49: 240–252; Wallace C.S. and Dowe D.L. (1999). Computer Journ...
متن کاملUnsupervised Learning of Gamma Mixture Models Using Minimum Message Length
Mixture modelling or unsupervised classification is a problem of identifying and modelling components in a body of data. Earlier work in mixture modelling using Minimum Message Length (MML) includes the multinomial and Gaussian distributions (Wallace and Boulton, 1968), the von Mises circular and Poisson distributions (Wallace and Dowe, 1994, 2000) and the distribution (Agusta and Dowe, 2002a, ...
متن کاملMinimum Message Length based Mixture Modelling using Bivariate von Mises Distributions with Applications to Bioinformatics
The modelling of empirically observed data is commonly done using mixtures of probability distributions. In order to model angular data, directional probability distributions such as the bivariate von Mises (BVM) is typically used. The critical task involved in mixture modelling is to determine the optimal number of component probability distributions. We employ the Bayesian information-theoret...
متن کاملModelling complex geological circular data with the projected normal distribution and mixtures of von Mises distributions
Circular data are commonly encountered in the earth sciences and statistical descriptions and inferences about such data are necessary in structural geology. In this paper we compare two statistical distributions appropriate for complex circular data sets: the mixture of von Mises and the projected normal distribution. We show how the number of components in a mixture of von Mises distribution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997